

- MESFET Amplifier," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-27, pp. 1066-1070, Dec. 1979.
- [3] P. T. Ho, C. M. Pham, and R. L. Mencik., "A 10-watt, C-band FET amplifier for TWTA replacement," in *1979 IEEE MTT-S Int. Microwave Symp. Dig.*, (Florida), May 1979.
- [4] M. Fukuta, T. Mimura, H. Suzuki, and K. Suyama., "4-GHz 15-W Power GaAs MESFET," *IEEE Trans. Electron Devices*, vol. ED-25, pp. 559-562, June 1978.
- [5] F. Hasegawa, Y. Takayama, A. Higashisaka, T. Furutsuka, and K. Honjo., "GaAs power MESFETs with a simplified recess structure," in *ISSCC Tech. Dig.*, Feb. 1978, pp. 118-119.
- [6] K. Honjo, Y. Takayama, and A. Higashisaka., "High power broadband internal matching technique for microwave GaAs FETs," *Tech. Rep. IECE*, vol. 79, no. 213, ED79-96, Jan. 1980.
- [7] S. H. Wemple, W. C. Niehaus, W. O. Schlosser, J. V. Dirolenz, and H. M. Cox., "Performance of GaAs power MESFETs," *Electron. Lett.*, vol. 14, pp. 175-176, Mar. 1978.
- [8] I. Drukier, R. Camisa, S. Jolly, H. Huang, and S. Narayan., "Medium power GaAs field-effect transistors," *Electron. Lett.*, vol. 11, pp. 104-105, Mar. 1975.
- [9] Y. Mitsui, M. Kobiki, M. Wataze, M. Otsubo, T. Ishii, and S. Mitsui., "Flip-chip mounted GaAs power f.e.t. with improved performance in X- to Ku-band," *Electron. Lett.*, vol. 15, pp. 461-462, July 1979.
- [10] Y. Takayama, K. Honjo, A. Higashisaka, and F. Hasegawa., "Internally matched microwave broadband linear power FET," in *1977 ISSCC Dig. Tech. Pap.*, pp. 166-167, Feb. 1977.
- [11] M. Wataze, Y. Mitsui, T. Shimanoe, M. Nakatani, and S. Mitsui., "High power GaAs f.e.t. prepared by molecular beam epitaxy," *Electron. Lett.*, vol. 14, pp. 759-761 Nov. 1978.
- [12] T. Suzuki, M. Nishihata, M. Itoh, S. Mitsui, and H. Miki., *Trans. IECE Japan*, 60-C, p. 661, 1977.

K-Band High-Power GaAs FET Amplifiers

JUN'ICHI SONE AND YOICHIRO TAKAYAMA, MEMBER, IEEE

Abstract—Lumped-element internal matching techniques were successfully adopted for *K*-band power GaAs FET amplifiers. The developed 18-GHz band two-stage amplifier provides 1.05-W power output at 1-dB gain compression and 1.26-W saturated power output with 8.1-dB small-signal gain. The 20-GHz band single-stage amplifier has 1.04-W power output with 3-dB associated gain. Lumped-element internal matching circuit design as well as amplifier fabrication are described. Intermodulation distortion and AM-to-PM conversion characteristics are also presented.

I. INTRODUCTION

POWER-OUTPUT CAPABILITY for GaAs FET's has been steadily increasing. Single-stage and multistage amplifiers have already exceeded the 10-W output power level in *C*-band [1] and have exhibited multiwatt capability in *X*-band [2], [3]-[5]. Recently, in *Ku*-band high-power FET's which demonstrate 2-W output power capability have been developed [6]-[8]. High-power amplifier development in *Ku*-band and even in *K*-band, using these FET's, is now expected [6].

Above *Ku*-band, high-power FET chip width becomes comparable to the signal wavelength in a distributed-element microstrip matching circuit and it becomes much more difficult to feed a microwave signal uniformly to such a large transistor. Various parasitic reactances accompanied with FET-to-external circuit connection become ap-

preciable and make wide-band operation of the power FET's difficult to achieve. These problems make usual distributed-element matching techniques, which were successfully used for low-noise GaAs FET amplifiers in *Ku*-, *K*-, and even *Ka*-bands [9], [10], inapplicable to high-power GaAs FET's with extremely low input impedances. These have restricted the use of GaAs FET amplifiers in *Ku*- and *K*-bands.

This paper presents effective application of lumped-element internal matching techniques to *K*-band power GaAs FET amplifiers, and microwave performances of 18- and 20-GHz band high-power FET amplifiers developed using the internal matching techniques. The developed 18-GHz band single-stage amplifier provides 1.25-W power output with 3-dB associated gain. The 20-GHz band single-stage amplifier has 1.04-W power output with 3-dB associated gain. The 18-GHz band two-stage amplifier provides 1.05-W power output at 1-dB gain compression with 8.1-dB small-signal gain and 1.25-W saturated power output.

In Section II, the device structure of NE869 series GaAs FET's and FET small-signal impedances in *K*-band are described. In Section III, lumped-element internal matching circuit design is discussed, as are amplifier fabrication and large-signal tuning. Microwave performances for the developed *K*-band single-stage and two-stage amplifiers are presented in Section IV. The effectiveness of the lumped-element internal matching techniques for FET high-power operation is demonstrated. Finally, in Section V, nonlinear distortion characteristics for the two-stage FET amplifier are discussed.

Manuscript received May 21, 1980; revised December 2, 1980. A condensed version of this paper has been presented at the 1980 IEEE MTT-S International Microwave Symposium, Washington, D.C.

The authors are with Basic Technology Research Laboratories, Nippon Electric Company, Ltd., Miyazaki, Takatsu-ku, Kawasaki, Japan.

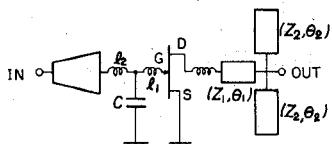


Fig. 3. Equivalent circuit for power GaAs FET amplifier. Z_1 , Z_2 : characteristic impedances, θ_1 , θ_2 : electrical lengths.

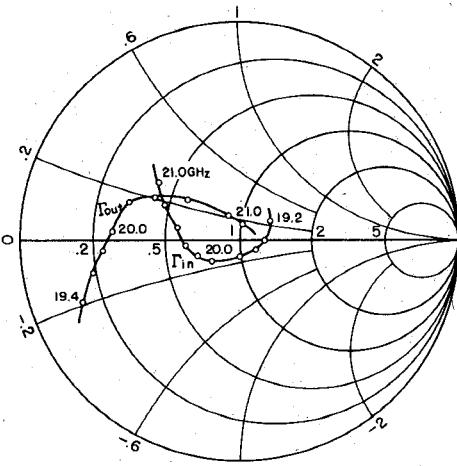


Fig. 4. Measured small-signal impedances of 20-GHz band single-stage power GaAs FET NE8698 amplifier.

output circuit. The conventional load-pull method cannot be applicable to the power transistor circuit design in such high frequencies because of difficulties of realizing the ideal impedance tuner and decoupling the FET and the circuit to measure the load impedance. In the present circuit design, the following method was adopted. The output circuit microstrip pattern in Fig. 3, with discretely movable electrical lengths θ_1 and θ_2 , was formed on a 0.25-mm-thick alumina substrate. By using this output circuit as a discrete tuner, the relationship between input-output power responses and small-signal output impedances for the trial amplifier was measured. Based on these results, the optimum microstrip pattern for the output power with 3-dB associated gain was determined. The small-signal output impedances for the amplifier with the optimum output circuit are shown in Fig. 4. The maximum available gain of the FET also measured in this procedure, by tuning to the small-signal matching condition, was around 7 dB at 18 GHz.

B. Amplifier Description

Fig. 5 is a photograph of the 20-GHz band single-stage amplifier with two-chip structure. The total width of the two chips is 2.5 mm and the module is 5.7 mm long. The gate bias circuit is composed of $\lambda/4$ -wavelength microstrip line and a beam-lead MIS-structured bypass capacitor. The drain bias circuit is composed of RF choke lines and a chip-type MIS-structured bypass capacitor. RF choke lines in the drain bias circuit are used because of the tolerance for large drain current density.

Fig. 6 is a photograph of the 18-GHz band two-stage

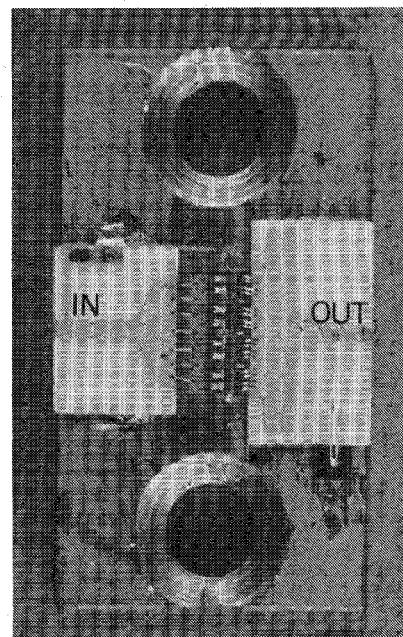


Fig. 5. 20-GHz single-stage power GaAs FET NE8698 amplifier.

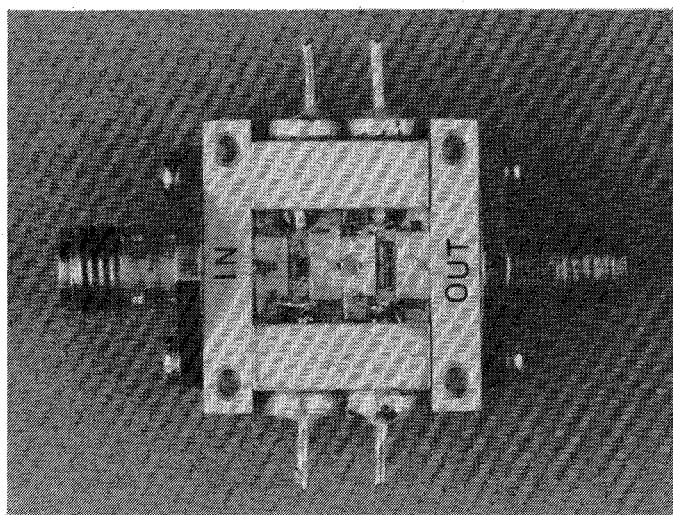


Fig. 6. Internal view of 18-GHz band two-stage power GaAs FET amplifier.

amplifier, consisting of an NE8694 amplifier module as the first-stage and an NE8698 amplifier module as the second stage. Each stage amplifier module was adjusted independently and assembled on a separate carrier. DC and gate bias bypass capacitors have beam-lead MIS structures. Drain bias bypass is provided by a chip-type MIS-structured capacitor. The first-stage and the second-stage modules were interconnected by a gold tape.

IV. MICROWAVE PERFORMANCE

The measured small-signal input and output impedances for the 20-GHz band NE8698 amplifier are shown in Fig. 4. The measurements were made using an HP K8747 transmission and reflection test unit.

The input-output responses and the power output responses versus frequency for the 18-GHz band NE8694

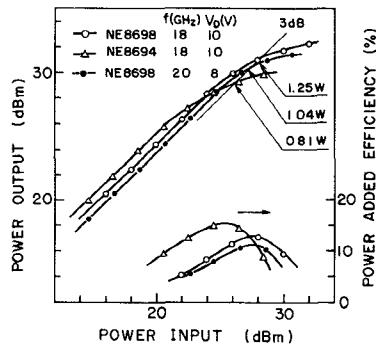


Fig. 7. Input and output responses for 18- and 20-GHz band GaAs FET amplifiers.

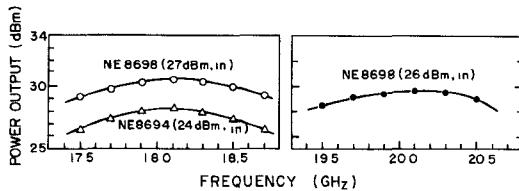


Fig. 8. Power output responses versus frequency for 18- and 20-GHz band GaAs FET amplifiers.

single-chip amplifier, the 18-GHz band NE8698 two-chip amplifier, and the 20-GHz band NE8698 two-chip amplifier are shown in Figs. 7 and 8, respectively. The 18-GHz band NE8694 amplifier has 0.8-W power output with 3-dB associated gain, 0.96-W saturated power output and 15-percent maximum power-added efficiency with 5.4-dB small-signal gain at 10-V drain voltage. The 18-GHz band NE8698 amplifier has 1.25-W power output with 3-dB associated gain, 1.68-W saturated power output, and 12.5-percent maximum power-added efficiency with 4.5-dB small-signal gain at 10-V drain voltage. The 20-GHz band NE8698 amplifier provides 1.04-W power output with 3-dB associated gain, 1.35-W saturated power output, and 11.0-percent maximum power-added efficiency with 3.8-dB small-signal gain at 8-V drain voltage. The 18-GHz band NE8698 amplifier covers the 17.7- to 18.5-GHz range with more than 1.0-W power output for 0.5-W input power level, and the 20-GHz band NE8698 amplifier covers the 19.65- to 20.5-GHz range with more than 0.8-W power output for 0.4-W input power level.

The 18-GHz band two-stage amplifier performance is shown in Fig. 9. The amplifier provides more than 0.8-W power output over the 17.7- to 18.6-GHz frequency range for 0.25-W input power level. The amplifier has 1.05-W power output at 1-dB gain compression with 8.1-dB small-signal gain, 1.26-W saturated power output, and 13.6-percent maximum power-added efficiency at 18.0 GHz.

Third-order intermodulation distortion was measured for the 18-GHz band two-stage amplifier by injecting two equal amplitude signals separated in frequency by 10 MHz and located at band center. Third-order intermodulation distortion characteristics exhibit a large gate voltage dependence, which is shown in Fig. 10. The open circles in Fig. 10 describe the intermodulation distortion ratio dependence on gate voltage V_{g1} in the first-stage amplifier mod-

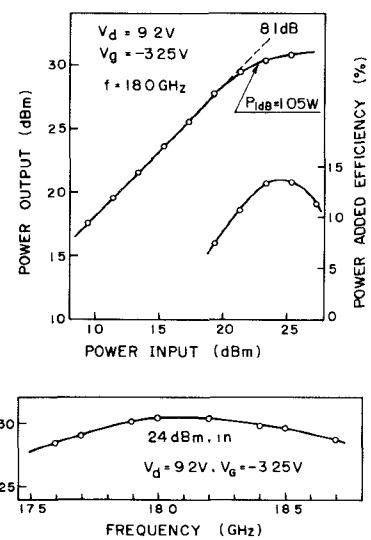


Fig. 9. Microwave performance of 18-GHz band two-stage power GaAs FET amplifier.

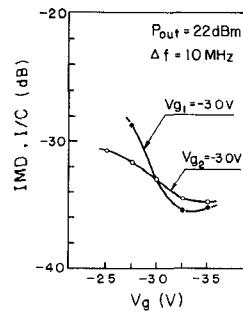


Fig. 10. Third-order intermodulation dependence on gate voltages for 18-GHz band two-stage power GaAs FET amplifier. V_{g1} : first-stage amplifier gate voltage. V_{g2} : second-stage amplifier gate voltage.

ule with gate voltage V_{g2} in the second-stage amplifier fixed to -3.0 V. The solid circles also show the intermodulation distortion ratio dependence on gate voltage V_{g2} with gate voltage V_{g1} fixed to -3.0 V. Both results were obtained for total output power $P_{out} = 22$ dBm. At the bias condition with small gate voltages $|V_{g1}|$ and $|V_{g2}|$, intermodulation distortion characteristics were determined. Considering these dependences on gate voltages, the gate voltages in the amplifier were fixed at relatively deep level as $V_{g1} = V_{g2} = -3.25$ V.

Fig. 11 shows the third-order intermodulation distortion characteristics and AM-to-PM conversion factor for the 18-GHz band two-stage amplifier. Third-order intermodulation distortion ratio was -27.5 dB at 26-dBm total power output level. The AM-to-PM conversion factor remained below 3 deg/dB for output power up to saturation.

V. CONCLUSION

Lumped-element internal matching techniques were successfully adopted for 18- and 20-GHz band power GaAs FET amplifiers. Single-stage and two-stage amplifiers were developed. The 18-GHz band two-stage amplifier provides 1.05-W power output at 1-dB gain compression and 1.26-W saturated power output with 8.1-dB small-signal gain. The

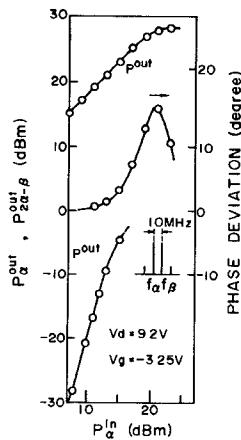


Fig. 11. Third-order intermodulation and AM-to-PM conversion characteristics of 18-GHz band two-stage power GaAs FET amplifier.

TABLE I.

MICROWAVE PERFORMANCE OF NE869 SERIES GaAs FET AMPLIFIERS. G_L : SMALL-SIGNAL GAIN. $P_{(4 \text{ dB})}$: OUTPUT POWER WITH 4-dB ASSOCIATED GAIN. $P_{(3 \text{ dB})}$: OUTPUT POWER WITH 3-dB ASSOCIATED GAIN. P_{sat} : SATURATED OUTPUT POWER. W_g : GATE WIDTH.

	NE8692	NE8694	NE8698
f (GHz)	14	14	14
G_L (dB)	6.6	6.5	6.0
$P_{(4 \text{ dB})}$ (W)	0.53	0.96	1.9
P_{sat} (W)	0.60	1.05	2.2
Max $\eta_{\text{odd}}\%$	21.5	21.5	20.5
W_g (mm)	1.5	3.0	6.0

	NE8692	NE8694	NE8698	NE8698
f (GHz)	18	18	18	20
G_L (dB)	5.6	5.4	4.5	3.8
$P_{(3 \text{ dB})}$ (W)	0.42	0.83	1.25	1.04
P_{sat} (W)	0.50	0.96	1.66	1.35
Max $\eta_{\text{odd}}\%$	14.2	15.0	12.5	11.0
W_g (mm)	1.5	3.0	6.0	6.0

20-GHz band single-stage amplifier has 1.04-W power output with 3-dB associated gain.

In order to demonstrate the effectiveness of the lumped-element internal matching techniques, a summary for NE869 series FET amplifiers microwave performance is shown in Table I. For reference, the microwave performances for 14-GHz band amplifiers are quoted in this table [6]. Lumped-element internal matching techniques are adopted for large gate width FET's, such as NE8694 and NE8698. For NE8692 with relatively small gate width, distributed-element matching circuit is used.

During the first stage of this work, distributed-element matching circuits were used to develop 14-GHz band NE8694 amplifiers [12]. However, their poor power combining efficiency and resultant power gain reduction made us give up this circuit technique. On the other hand, as is shown in Table I, the high-power operation of FET's with multicell and multichip structure can be achieved by using the lumped-element internal matching techniques, without marked gain reduction and marked degradation of power combining efficiency in the large gate width FET's.

ACKNOWLEDGMENT

The authors wish to thank H. Kohzu in the Semiconductor Division for supplying power GaAs FET chips, Y. Aono, A. Higashisaka, and F. Hasegawa for developing the power GaAs FET's, and K. Ayaki and H. Katoh for their constant encouragement.

REFERENCES

- [1] K. Honjo, Y. Takayama, T. Furutsuka, A. Higashisaka and F. Hasegawa, "15-Watt internally matched GaAs FETs and 20-Watt amplifier operating at 6 GHz," in *IEEE Int. Microwave Symp. Dig. Tech. Papers*, pp. 289-291, 1979.
- [2] H. Q. Tserng and H. M. Macksey, "Microwave GaAs FET amplifiers with lumped-element impedance matching networks," in *IEEE Int. Microwave Symp. Dig. Tech. Papers*, pp. 282-284, 1978.
- [3] Y. Takayama, T. Ogawa, and Y. Aono, "11 GHz and 12 GHz multiwatt internal matching for power GaAs f.e.t.s," *Electron. Lett.*, vol. 15, pp. 326-328, May 1979.
- [4] M. Nakatani, Y. Kadokawa, and T. Ishi, "A 12-GHz 1-W GaAs MESFET amplifier," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-27, pp. 1066-1070, May 1979.
- [5] T. Sakane, Y. Arai, and H. Komizo, "Large signal dynamic behavior of X-band power GaAs FET's," in *IEEE Int. Solid-State Circuit Conf. Dig. Tech. Papers*, pp. 160-161, 1980.
- [6] J. Sone and Y. Takayama, "Ku- and K-band internally matched high-power GaAs f.e.t. amplifiers," *Electron. Lett.*, vol. 15, pp. 562-564, Aug. 1979.
- [7] Y. Mitsui, M. Otsubo, T. Ishi, S. Mitsui, and K. Shirahata, "Flip-chip mounted GaAs power FET with improved performance in X to Ku band," in *European Microwave Conf. Dig. Tech. Papers*, pp. 272-276, 1979.
- [8] I. Drukier, P. C. Wade, and J. W. Thomson, "A high power 15 GHz GaAs FET," in *European Microwave Conf. Dig. Tech. Papers*, 1979, pp. 282-286.
- [9] M. G. Walker, F. A. Marki, and H. M. Abramowitz, "MESFET amplifiers go to 18 GHz," *Microwave Syst. News*, vol. 6, pp. 39-48, Apr./May 1976.
- [10] C. F. Krumm, "A 30-GHz GaAs FET amplifier," in *IEEE Int. Microwave Symp. Dig. Tech. Papers*, pp. 383-385, 1978.
- [11] T. Furutsuka, A. Higashisaka, Y. Aono, Y. Takayama, and F. Hasegawa, "GaAs power MESFETs with a graded recess structure," *Electron. Lett.*, vol. 15, pp. 417-418, July 1979.
- [12] J. Sone, Y. Takayama, and Y. Aono, "14-GHz band 1 Watt GaAs f.e.t. amplifier," *Electron. Lett.*, vol. 15, pp. 212-213, Mar. 1979.